Opportunities for Advancing Stormwater Control: Municipal Examples and Ideas for Policy Implementation - or -

Mike Rupiper, PE, ENV SP Director of Environmental Resources Planning Capital Area Regional Planning Commission

Opportunity for a Watershed Approach to Increase Community Resilience with Distributed Green Infrastructure

Mike Rupiper, PE, ENV SP Director of Environmental Resources Planning Capital Area Regional Planning Commission

2017 Joint Stormwater TAC

Recommendations of the Stormwater Technical Advisory Committee of the Dane County Lakes & Watershed Commission and the Capital Area Regional Planning Commission

May 4, 2017

Develop and Implement a Stormwater Volume Trading Program

 Improve standards for volume control for closed basins, new development, and redevelopment

Joint Stormwater Work Group

DC Retention Credit Program

Wetland Mitigation Programs

Current Dane County Efforts

- Volume control practices are now eligible under the Urban Water Quality Grant program
- Pilot projects for conversion of County owned land from agricultural to prairie

Legacy of Historical Development

Green Infrastructure

A <u>source reduction</u> approach to capturing, absorbing, infiltrating, evaporating, or storing rain and melting snow

Green Infrastructure Strategies

Rain Barrels & Cisterns collect rain for later

Rain Gardens beauty & rain collection

Native Landscaping create a healthy habitat

Stormwater Trees

Soil Amendments create deeper roots

Green Roofs lower your utility bills

Porous Pavement rain soaks into the ground

Bioswales catch dirty road runoff

Wetlands support wildlife

Greenseams® manage flooding upstream

Green Infrastructure Programs

Motivations for Green Infrastructure

Green Infrastructure Motivations																
	Water Quality				Economic				Environmental			Social				
Cities	EPA Consent Decree	Reduce CSOs No Consent Decree	Cle an up Local Waterways	Improve Drinking Water Quality	Increase Property Values	Promote Gasen Jobs	Decrease Floods and Basement Backups	Reduced Wastewater Treatment Costs	Conserve Energy	Mitigate Urban Heat Island Effect	Improve AmbientAir Quality	Adapt to Climate Change	Provide Habitat for Local Wildlife	Reduce Viclent Crime	Improve Public Mental and Physical Health and Safety	Create Aesthetically Pleasing Green Spaces
Atlanta, GA Austin, TX Baltimore, MD Boston, MA Charlotte, NC Chicago, IL Cleveland, OH Deller, TX	11		11 111	/	1		111 1			11	1	11	~ ~ ~ ~		~ ~ ~	****
Dallas, IX Denver, CO Detroit, MI Honolulu, HI Indianapolis, IN Kansas City, MO	1 11		11 11	1	1		1	1	1	1	1	1		1	1	1
Los Angeles, CA Mihwaukee, WI Minne apolis, MN New Orleans, LA New York, NY Philadelphia, PA Partland, OR	111	1		-			1	,		1	1	,			,	
Providence, RI San Antonio, TX San Francisco, CA Seattle, WA St. Louis, MO		1	1	1		1	2	1	-	-	,	,	-		,	1
Tampa, FL Washington, DC	1		1	1	1	1	1	1	1	1	1					1

Article

sustainability

The Green Experiment: Cities, Green Stormwater Infrastructure, and Sustainability

Christopher M. Chini ¹, James F. Canning ¹, Kelsey L. Schreiber ¹, Joshua M. Peschel ^{2,*} and Ashlynn S. Stillwell ¹

Multiple Benefits of Green Infrastructure

Environmental, social, economic, and public health benefits of green infrastructure

U.S. Environmental Protection Agency Office of Research and Development

Investing in Green Infrastructure

OF GREEN INFRASTRUCTURE MEASURES Capital Cost per Gallons per DEEP TUNNEL COST Cost per Action No. GI Measure Unit of \$2.42/GALLON Unit of Measurement Gallon Classification Measurement STORMWATER A^A \$250/each 169-449 gallons/vear \$0.80 TREES ш Б \$1.95 ۷ RAIN BARREL \$45-\$190/each 40-80 gallons/barrel MMSD Barrel -SIN \$0.81 /gallon) \$1.00 \$500-\$10,000/ ۷,,۷ CISTERN Dependent on cistern size (based on 500 each gallon cistern **V**_**V** RAIN GARDENS \$3-\$12/sn ft 1-3 gallons/sq. ft. \$3.75 NATIVE \$3 400-\$5 975/ 43.560-87.120 gallons/acre ** \$0.07 LANDSCAPING acre OR (1-2 gallons sq. ft.) 5 gal/cu, ft. ш BIO-SWALE VV 🔥 \$3-\$10 cu. ft. (based on swale size of \$1.30 峀 10m long × 2m wide × 1m depth) 00 246,000 gallons/mile \$200.000 -(Walk/Bike Trai Riparian) (based on 75 ft wide × 1 mile \$0.70 ******* \$500,000/mile õ long trail) GREEN ROOF ** \$8-\$25/sq. ft 1.0-5.0 gallons/sq. ft. \$5.50 POROUS 130.680-740,520 galllons/acre \$87,120-♦ ۲٫۲ \$0.35 \$217,800/acre OR (3-17 gallons/sq. ft.) GREEN ALLEY ш \$260.000-130,680-740,520 gallons/acre • **•** \$0.82 đ OR (3-17 gallons/sg. fr.) \$455.000/acre PARKING LOT 2 CONSTRUCTED \$39,000-360,000-1.5 million gallons/ VY M \$0.06 -\$82,000/acre acre OR (8.3-34 gallons/sg. ft.) WETLANDS

CONSTRUCTION (CAPITAL) COST COMPARISON

KEY FRESH COAST G U A R D I A N S TION FRESH COAST TION G U A R D I A N S These are approximate costs and holding capacities, since systems are specialized for their location and region. The price and holding capacity ranges vary based on specific designs.

Deep Tunnel cost is based on capital investment cost holding capacity

Cost/gallion is calculated by taking the capital cost only divided by the number of gallions per unit measurement. This is not a complete cost, For instance, land acquisition costs are not included. Therefore, additional investigation is recommended.

Note: if there is a price/capacity range, the average of each was taken and used for the calculation.

- Different strategies

 have different costs and
 provide different
 benefits
- Select strategies that are most appropriate for a specific area and conditions

Support for Green Infrastructure

Strategy	Quartile 1	Quartile 2	Quartile 3	Quartile 4
01 More Renewable Energy	3,437	2,330	1,681	1,186
02 Green Infrastructure	3,249	2,838	1,672	875
03 More Community-Based Resources	3,022	2,390	2,001	1,221
04 Better Connect Education and Work	2,764	2,401	2,023	1,447
05 Expand Transit	2,739	2,028	1,920	1,946
06 Expanded Housing Options	2,602	2,102	1,594	2,336
07 More Local Energy Production	2,518	2,794	2,269	1,053
08 More Locally Grown Food	2,114	3,170	2,212	1,138
09 Walkable Communities	2,084	2,451	2,718	1,381
10 More Close-Knit Communities	1,960	1,875	2,670	2,129
11 Preserve More Farming Areas	1,569	1,612	2,312	3,141
12 Promote Tech Job Growth	1,543	1,727	2,149	3,215
13 More Vibrant Centers	1,431	2,225	2,444	2,534
14 Bigger and More Connected Natural Areas	1,401	1,805	2,798	2,630
15 More Access to Outdoors	1,356	1,726	2,475	3,077
16 More Online Communication and Remote Living	747	1,062	1,598	5,227

Green Infrastructure Plan

Example Green Infrastructure Goal

Milwaukee's Goal:

By the year 2035, create enough green infrastructure to capture 740 million gallons of water <u>every time it rains</u>.

Example Green Infrastructure Assessment

In 2013, an Urban Forest Assessment attributed \$122 million in environmental services annually from Denver's urban forest with the ability to intercept 1.4 billion gallons of rainfall each year.

Regional Watershed Approach

Implementation higher up in the watershed will benefit more people in the watershed overall

Yahara WINs Model

Madison Metropolitan Sewerage District Adaptive Management Plan

January, 2017

1

INTERGOVERNMENTAL AGREEMENT FOR AN ADAPTIVE MANAGEMENT PLAN FOR THE YAHARA WATERSHED

WHEREAS, Wis. Stat. § 66. 0301, entitled "Intergovernmental cooperation," provides that any municipality (defined as including but not limited to any state agency, city, village, town, county, sanitary district, metropolitan sewerage district or sewer utility district) may contract with other municipalities for the furnishing of services, and the joint exercise of any power or duty required or authorized by law;

WHEREAS, the U.S. Environmental Protection Agency (EPA) has approved Total Maximum Daily Loads for Total Phosphorus and Total Suspended Solids (TSS) in the Rock River Basin (the "Rock River TMDL" or "TMDL"), which includes the Yahara Watershed as shown on Exhibit A;

WHEREAS, municipalities who own Publicly Owned Treatment Works (POTWs) and/or Municipal Separate Storm Sewer Systems (MS4s) in the Yahara Watershed are required to meet surface water quality standards and/or not exceed wasteload allocations for phosphorus and TSS pursuant to the provisions of Wis. Admin Code § NR 217 and/or the Rock River TMDL;

WHEREAS, Wis. Admin Code § NR 217. 18 allows sources holding a Wisconsin Pollutant Discharge Elimination System (WPDES) permit the option known as adaptive

Intergovernmental Agreement-Final

Page 1

Yahara CLEAN Model

Start with a Plan

- What is our green infrastructure <u>goal</u> for each watershed?
- What is the most cost effective mix <u>strategies</u> & <u>locations</u> for implementation?
- How will we <u>fund</u> it?

Regional Collaboration

Recommendations

- Continue to develop support for a broad based regional collaboration to address stormwater runoff and flooding
- Develop a detailed green infrastructure plan (consultant / steering committee)
- Develop the detailed framework for a stormwater retention credit (volume trading) program (consultant / steering committee)

Lakes & Watersheds Commission Discussion and Input

How Much is 740 Million Gallons?

- 2.8" over Lake Mendota
- 8.3" over Lake Monona
- 13.1" over Lake Waubesa
- 8.5" over Lake Kegonsa