BEACH MONITORING PROGRAM UPDATES & NITRATE TESTING FOR DRINKING WATER

PRESENTED TO THE DANE COUNTY LAKES AND WATERSHED COMMISSION

Jennifer Lavender Braun (she/her) M.S., REHS/RS JLavenderBraun@publichealthmdc.com

June 5, 2024

Healthy people. Healthy places.

CURRENT PROGRAM STATUS

PROGRAM STAFFING

1 FTE Microbiologist: Jennifer Braun, M.S

Day-to-Day Operations, Lab Analysis (QPCR Primary), and Backup

Beach Sampling 1 FTE: Environmental Technician: Jesse Ramirez

> **Beach Sampling & Lab Analysis** 1 LTE Lab Assistant: Allen Kaplan, B.S

Pending Hire: 1 LTE Field Staff

Beach Analysis QPCR 1 LTE Environmental Specialist: Martha Kuka

Current Monitoring Locations

Dane County 22 Beaches* 7 Municipalities

City of Madison **UW-Madison** Maple Bluff Monona Middleton Mt. Horeb Stoughton Verona

*Tenney Beach: Closed for Season Due to Construction

CURRENT TESTING PROCESS

E. coli

Defined Substrate Technology (DST) Results take 18-24 Hours

Blue-Green Algae (Cyanobacteria)

Rapid Strip Test: Microcystins Toxin results take about 1 hour

2024 SEASON SO FAR...

BEACH CLOSURES

- 18 Closure Days
 - 83% Rainfall Model/Elevated Bacteria
 - 17% Cyanobacteria

<u>Beach</u> ▼	<u>Municipality</u>	Date Sampled/ Observed	<u>Reason for Closure</u> _↓ ↑	Closed due to Rainfall Model?	<u>Date</u> Closed/Posted ▼	Date Re-Opened	<u>Beach Days</u> Lost ▼	<u>E. coli MPN/100</u> <u>mL</u>	<u>Strip µg/L</u> microsystin ▼
Olin	City of Madison	5/28/2024	E. coli	Yes	5/28/2024	5/29/2024	1.0	140	
Marshall	City of Madison	6/3/2024	Cyanobacteria	No	6/3/2024	6/5/2024	2.0	120	0
Spring Harbor	City of Madison	6/3/2024	Cyanobacteria	No	6/3/2024	6/5/2024	1.0	100	0
BB Clarke	City of Madison	6/4/2024	E. coli	Yes	6/4/2024	6/5/2024	1.0	590	
Esther	City of Madison	6/4/2024	E. coli	Yes	6/4/2024		2.0	1,900	
Frost Woods	Monona	6/4/2024	E. coli	Yes	6/4/2024	6/5/2024	1.0	410	
Hudson	City of Madison	6/4/2024	E. coli	Yes	6/4/2024		2.0	610	
McDaniel	McFarland	6/4/2024	E. coli	Yes	6/4/2024		2.0	1,300	
Olbrich	City of Madison	6/4/2024	E. coli	Yes	6/4/2024		2.0	730	
Olin	City of Madison	6/4/2024	E. coli	Yes	6/4/2024		2.0	1,400	
Schluter	Monona	6/4/2024	E. coli	Yes	6/4/2024	6/5/2024	1.0	340	
Spring Harbor	City of Madison	6/4/2024	E. coli	Yes	6/4/2024	6/5/2024	1.0	63	

IMPLEMENTATION OF REAL-TIME TESTING AND MODELING

PILOT: RAINFALL MODELING

- **GOAL:** Predict when beach *E. coli* levels were likely to be high, in order to improve the timeliness of beach closures while saving the agency resources.
- 9 of the 23 beaches were significantly likely to have elevated *E. coli* levels (resulting in a closure) after it rained.

PILOT: RAINFALL MODELING

Instructions: At the beginning of each day, a user should enter the information in the cells highlighted green. The calcluator will automatically predict which beaches are at high risk of high levels of E. Coli.

Data Source: Precipitation data should be downloaded from the Dane County Airport weather gage (KMSN). The data can be found at https://w1.weather.gov/data/obhistory/KMSN.html

Today's Date:	6/4/2024		
Previous 24-hr	precipitation:	1	in.
Previous 48-hr	precipitation:	0	in.

				Date		
Beach Name	24-hr Threshold (in.)	48-hr Threshold (in.)	Median Days Closed	6/4/2024	6/5/2024	6/6/2024
BB Clarke	0.9	1.1	1	Alert	No Alert	No Alert
Esther	0.5		1	Alert	No Alert	No Alert
Frost Woods	0.9	1.6	1	Alert	No Alert	No Alert
Hudson	0.5	1.1	2	Alert	Alert	No Alert
McDaniel Beach	0.3	0.9	1	Alert	Alert	No Alert
Olbrich	0.9	0.9	2	Alert	Alert	Alert
Olin	0.4	0.6	1	Alert	Alert	No Alert
Schluter	0.9	0.9	1	Alert	Alert	No Alert
Spring Harbor	0.8	1.2	1	Alert	No Alert	No Alert

TARGETED APPROACH

PRIORITIZE RAPID TESTING AT CLOSED BEACHES

- If a beach is closed due to elevated *E. coli* levels (lab testing or rainfall model), resamples will be prioritized for QPCR analysis.
- Beaches can open more quickly following a closure.
- Allows for testing to take place on a Monday or Friday

IMPROVED SIGNAGE

PILOT IMPROVED SIGNAGE

- Aluminum Signs
- Informative
 - Rainfall Impacts
 - Harmful Algal Bloom Risks
- QR Code link to website
- Multilingual
 - English, Spanish, Hmong

Example Sign courtesy of Surfrider Foundation www.surfrider.org

REAL-TIME TESTING: QPCR

Targets bacterial DNA to allow for rapid detection of *E. coli* levels.

BioGx Recreational Water Reagents

REAL-TIME PCR (QPCR)

PROs

- Rapid Testing: Same Day Results (3-4 Hours)
 - Measures DNA instead of culturing cells overnight

CONs

- Higher Cost: \$30/Sample vs \$10/Sample (Supplies ONLY)
- Requires specially trained staff to run the testing.
 - 1 FTE: Jennifer Braun, M.S
 - 1 LTE: Martha Kuka, B.S

REAL-TIME PCR (QPCR)

CHALENGES

Results can be impacted by presence of blue-green algae, and other naturally occurring compounds.

- False positives
- Invalid results
 - Reaction Inhibition

REAL-TIME PCR (QPCR)

CHALENGES

Takes time to implement each season.

- Each beach is unique
- 23 Beaches
 - A lot of ground to cover
- Works best at beaches with point source pollution (wastewater)

NEXT STEPS

VALIDATE RAINFALL MODEL

• Gather more data this season to validate rainfall model.

IMPROVE RAPID METHODS

- More sampling staff
- Samples to the lab faster
- Results sooner.
- Real-Time Data

LONG TERM GOALS & NEW TECHNOLOGY

LONG TERM GOALS

Targeted Analysis

- Modeling, Rapid Methods, Harmful Algal Blooms
- Improved Workflow
- Improved Beach Signage & Communication
 - Inclusive and Accessible
 - Multilingual, Plain Language, Visuals Cues

NEW TECHNOLOGY "GOALS"

FlowCam Cyano

- Flow imaging microscopy
- Allows for identification of cyanobacteria species
- Target toxin testing to those samples that show prevalent toxin producers.
- Identify blooms that may not produce toxin to help inform public health risk.

DRINKING WATER NITRATE TESTING OPTIONS

• IMPORTANCE

- Blue Baby Syndrome in infants under six months of age and that are bottle fed.
 - Competes for oxygen in the bloodstream.
- National Cancer Institute suggests a link between elevated levels of nitrate in drinking water and an increased risk of non-Hodgkin's lymphoma.

MAJOR SOURCES

Fertilizers (agriculture), animal waste, and human sewage.

- MAXIMUM CONTAMINATE LEVEL (MCL)
 - Set by the US EPA at 10 ppm
- MCL Exceedances (Nitrate >10 ppm)
 - Treatment Methods:
 - Reverse Osmosis
 - Anion Exchange
 - Nitrate "Selective" Anion Exchange
 - Distillation
 - Electrodialysis

- TESTING OPTIONS AT PUBLIC HEALTH MADISON & DANE COUNTY (ENVIRONMENTAL LABORATORY UNIT)
 - US EPA METHOD 300.00
 - Anion Chromatography
 - Increased Accuracy
 - Compared to at home tests
 - Low Level Detection (0.029 PPM)
 - Samples must be analyzed within 48 hours of collection.
 - Cost \$30 per sample

LABORATORY TEST DATA 10 YEARS: 2014-2024

- Samples Tested: 2,263¹
- MCL Exceedances: 292 (13%)
 - Range: 10 ppm 42 ppm²
 - Average Exceedance: 13.8 ppm

¹: No samples were accepted March 2020-August 2020 due to the COVID-19 pandemic. ²: Sample with 42 ppm nitrate was collected from a private residence in Green County, WI. Nitrate levels >20 ppm detected in Dane County were collected in Town of Dane (34 ppm), Cottage Grove, Cross Plains, Sun Prairie, and Waunakee (20-29 ppm).

Integration Results						
No.	Peak Name	Retention Time	Area	Height	Amount	Comment
		min	µS*min	μS	PPM	
1	Fluoride	2.427	0.021	0.115	1.1615	
2	Chloride	3.064	1.038	10.499	55.2948	
n.a.	Nitrite	n.a.	n.a.	n.a.	n.a.	
3	Nitrate	4.267	0.640	4.952	13.5899	
n.a.	Phosphate	n.a.	n.a.	n.a.	n.a.	
4	Sulfate	6.964	0.306	1.559	27.7235	

ANNUAL TESTING

- Recommended for all private well owners.
- Bacteria (Coliform) and Nitrate
- Annual Private Well Testing Package \$75
- E-mail: Lab@publichealthmdc.com

Test your well water every year!

We recommend testing your water every year for bacteria and nitrate to keep your water safe to drink.

Last test date:

Get a test kit & instructions: publichealthmdc.com/WaterTesting

VISIT US ONLINE publichealthmdc.com

FOLLOW US ON SOCIAL MEDIA
@publichealthmdc

0 0 0

000

SUBSCRIBE FOR NEWS RELEASES, BLOGS, NEWSLETTERS publichealthmdc.com/email-lists